4.7 Article

An analysis of probability of area techniques for missing persons in Yosemite National Park

Journal

APPLIED GEOGRAPHY
Volume 47, Issue -, Pages 99-110

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apgeog.2013.11.001

Keywords

Search theory; Time geography; Travel cost; Wild land search and rescue

Categories

Ask authors/readers for more resources

Study of wilderness search and rescue (WiSAR) incidents suggests a dependency on demographics as well as physical geography in relation to decisions made before/after becoming lost and subsequent locations in which subjects are found. Thus an understanding of the complex relationship between demographics and physical geography could enhance the responders' ability to locate the subject in a timely manner. Various global datasets have been organized to provide general distance and feature based geostatistical methods for describing this relationship. However, there is some question as to the applicability of these generalized datasets to local incidents that are dominated by a specific physical geography. This study consists of two primary objectives related to the allocation of geographic probability intended to manage the overall size of the search area. The first objective considers the applicability of a global dataset of lost person incidents to a localized environment with limited geographic diversity. This is followed by a comparison between a commonly used Euclidean distance statistic and an alternative travel-cost model that accounts for the influence of anthropogenic and landscape features on subject mobility and travel time. In both instances, lost person incident data from years 2000 to 2010 for Yosemite National Park is used and compared to a large pool of internationally compiled cases consisting of similar subject profiles. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available