4.7 Article

Short-chain fatty acids suppress food intake by activating vagal afferent

Journal

JOURNAL OF NUTRITIONAL BIOCHEMISTRY
Volume 57, Issue -, Pages 130-135

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jnutbio.2018.03.009

Keywords

Short-chain fatty acid; Butyrate; Food intake; Vagal afferents; Nodose ganglion

Funding

  1. Japan Society for the Promotion of Science (JSPS) [26460302]
  2. JSPS [26670453]
  3. Japan Diabetes Foundation
  4. JKA through its promotion funds from KEIRIN RACE

Ask authors/readers for more resources

Fermentable carbohydrates including dietary fibers and resistant starch produce short-chain fatty acids (SCFAs), including acetate, propionate and butyrate, through microbial fermentation in the intestine of rodents and humans. Consumption of fermentable carbohydrate and SCFAs suppress food intake, an effect involving the brain. However, their signaling pathway to the brain remains unclear. Vagal afferents serve to link intestinal information to the brain. In the present study, we explored possible role of vagal afferents in the anorexigenic effect of SCFAs. Intraperitoneal (ip) injection of three SCFA molecules (6 mmol/kg) suppressed food intake in fasted mice with the rank order of butyrate > propionate > acetate. The suppressions of feeding by butyrate, propionate and acetate were attenuated by vagotomy of hepatic branch and blunted by systemic treatment with capsaicin that denervates capsaicin-sensitive sensory nerves including vagal afferents. Ip injection of butyrate induced significant phosphorylation of extracellular-signal-regulated kinase 1/2, cellular activation markers, in nodose ganglia and their projection site, medial nucleus tractus solitaries. Moreover, butyrate directly interacted with single neurons isolated from nodose ganglia and induced intracellular Ca2+ signaling. The present results identify the vagal afferent as the novel pathway through which exogenous SCFAs execute the remote control of feeding behavior and possibly other brain functions. Vagal afferents might participate in suppression of feeding by intestine-born SCFAs. (C) 2018 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available