4.7 Article

Intracranial Electrophysiology Reveals Reproducible Intrinsic Functional Connectivity within Human Brain Networks

Journal

JOURNAL OF NEUROSCIENCE
Volume 38, Issue 17, Pages 4230-4242

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0217-18.2018

Keywords

default mode network; dorsal attention network; dynamic functional connectivity; electrocorticography; resting-state fMRI

Categories

Funding

  1. National Institute of Neurological Disorders and Stroke [R01NS078396]
  2. National Institute of Mental Health [1R01MH109954-01]
  3. National Science Foundation [BCS1358907]
  4. Canadian Institutes of Health Research
  5. Marie Sklodowska-Curie Actions fellowship [654038]
  6. U.S. National Institute of Mental Health [R00MH103479]
  7. Marie Curie Actions (MSCA) [654038] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

Evidence for intrinsic functional connectivity (FC) within the human brain is largely from neuroimaging studies of hemodynamic activity. Data are lacking from anatomically precise electrophysiological recordings in the most widely studied nodes of human brain networks. Here we used a combination of fMRI and electrocorticography (ECoG) in five human neurosurgical patients with electrodes in the canonical default (medial prefrontal and posteromedial cortex), dorsal attention (frontal eye fields and superior parietal lobule), and frontoparietal control (inferior parietal lobule and dorsolateral prefrontal cortex) networks. In this unique cohort, simultaneous intracranial recordings within these networks were anatomically matched across different individuals. Within each network and for each individual, we found a positive, and reproducible, spatial correlation for FC measures obtained from resting-state fMRI and separately recorded ECoG in the same brains. This relationship was reliably identified for electrophysiological FC based on slow (<1 Hz) fluctuations of high-frequency broadband (70-170 Hz) power, both during wakeful rest and sleep. A similar FC organization was often recovered when using lower-frequency (1-70 Hz) power, but anatomical specificity and consistency were greatest for the high-frequency broadband range. An interfrequency comparison of fluctuations in FC revealed that high and low-frequency ranges often temporally diverged from one another, suggesting that multiple neurophysiological sources may underlie variations in FC. Together, our work offers a generalizable electrophysiological basis for intrinsic FC and its dynamics across individuals, brain networks, and behavioral states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available