4.7 Article

Molecular separation in liquid phase: Development of mechanistic model in membrane separation of organic compounds

Journal

JOURNAL OF MOLECULAR LIQUIDS
Volume 262, Issue -, Pages 336-344

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.molliq.2018.04.101

Keywords

Mechanistic modeling; Simulation; Separation; Membranes; Extraction

Ask authors/readers for more resources

Membrane-based removal of benzoic acid from effluents was investigated in this work. A comprehensive predictive model was developed in order to describe and predict the continuous separation process for wastewater treatment. Separation of benzoic acid from wastewater using a hollow-fiber membrane module was modeled and simulated. Transport phenomena equations as well as extraction reaction of benzoic acid were taken into account upon developing the model of process. The model equations were solved using a numerical scheme based on finite element approach. Computational fluid dynamic tool was used for solution of the model's equations. The model findings were validated through comparing with measured values, and it was revealed that the model is valid for this particular process and can be used for design and optimization of the membrane -based benzoic acid removal. Moreover, the simulation results showed that the flow rate of aqueous phase (feed solution) has significant effect on the removal of benzoic acid from wastewater streams. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available