4.7 Article

Predicting ionic liquid melting points using machine learning

Journal

JOURNAL OF MOLECULAR LIQUIDS
Volume 264, Issue -, Pages 318-326

Publisher

ELSEVIER
DOI: 10.1016/j.molliq.2018.03.090

Keywords

QSPR; Ionic liquids; Melting point; Machine learning; Experimental; Quantum chemistry

Funding

  1. Norwegian Research Council (NFR) from CLIMIT [233776]

Ask authors/readers for more resources

The melting point (T-m) of an ionic liquid (IL) is of crucial importance in many applications. The T-m can vary considerably depending on the choice of the anion and cation. This study explores the use of various machine learning (ML) methods to predict the melting points (-96 degrees C-359 degrees C range) of structurally diverse 2212 ILs based on a combination of 1369 cations and 141 anions. Among the ML models applied to independent training and test sets, tree-based ensemble methods (Cubist, random forest and gradient boosted regression) were found to demonstrate slightly better performance over support vector machines and k-nearest neighbour approaches. In comparison, quantum chemistry based COSMOtherm predictions were generally found to have significant deviations with respect to the experimental values. However, classification models were more efficient in discriminating between ILs with T-m > 100 degrees C and those below 100 degrees C. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available