4.7 Article

Optimizing electrospinning parameters for piezoelectric PVDF nanofiber membranes

Journal

JOURNAL OF MEMBRANE SCIENCE
Volume 563, Issue -, Pages 804-812

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.memsci.2018.06.050

Keywords

Piezoelectric nanofiber membrane; Electrospinning; Biofouling mitigation; Water filtration

Funding

  1. National Science Foundation Graduate Research Fellowship Program [DGE 1418060]
  2. University of Southern California Viterbi School of Engineering
  3. University of Southern California

Ask authors/readers for more resources

In this study, nanofiber membranes were fabricated using electrospinning to induce piezoelectric properties. Optimization of the piezoelectric properties was achieved using the Taguchi design method to systematically vary the electrospinning parameters (acetone fraction, tip-to-collector distance (TCD), flow rate, and voltage setting). The optimized settings for piezoelectric properties were a solvent ratio of 60 v% DMF/40 v% acetone, a TCD of 16 cm, a flow rate of 0.8 mL/h, and a voltage setting of 14 kV. Additionally, the effect of three solvents (dimethylformamide, N-methylpyrrolidone, and dimethyl sulfoxide) on fiber formation and piezoelectric properties was compared; dimethylformamide (DMF) created the smallest fiber diameter and highest piezoelectric properties. During filtration of a synthetic solution mimicking biofouling, severe fouling was observed for both the commercial flat-sheet PVDF microfiltration membranes and unactivated electrospun membranes, although fouling occurred at different times for the electrospun membranes fabricated with different solvents. Little to no flux decline or increase in TMP was observed for the piezoelectrically activated nanofiber membranes. Total suspended solids removal of anaerobic digester mixed liquor for the electrospun membranes were comparable to the commercial PVDF microfiltration membrane. The results demonstrate that piezoelectrically activated nanofiber membranes have the potential to mitigate fouling in water treatment applications, particularly for systems with high levels of biofouling that require suspended solids separation (i.e., membrane bioreactors).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available