4.7 Article

The Syntheized Plant Metabolite 3,4,5-Tri-O-Galloylquinic Acid Methyl Ester Inhibits Calcium Oxalate Crystal Growth in a Drosophila Model, Downregulates Renal Cell Surface Annexin A1 Expression, and Decreases Crystal Adhesion to Cells

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 61, Issue 4, Pages 1609-1621

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jmedchem.7b01566

Keywords

-

Funding

  1. TWAS-CNPq [190066/2014-8]
  2. Academy of Sciences for the Developing World (TWAS), Italy
  3. National Council for Scientific and Technological Development (CNPq), Brazil
  4. Sao Paulo Research Foundation (FAPESP) [2011/13630-7]
  5. Mayo Clinic O'Brien Urology Research Center (NIH) [DK100227]
  6. Mayo Foundation for Medical Research

Ask authors/readers for more resources

The plant metabolite 3,4,5-tri-O-galloylquinic acid methyl ester (TGAME, compound 6) was synthesized, and its potential effect on calcium oxalate monohydrate (COM) crystal binding to the surface of Madin-Darby canine kidney cells type I (MDCKI) and crystal growth in a Drosophila melanogaster Malpighian tubule (MT) model were investigated. Membrane, cytosolic, and total annexin A1 (AxA1), alpha-enolase, and heat shock protein 90 (HSP90) amounts were examined by Western blot analysis after subcellular fractionation, then confirmed by immunofluorescence staining of cultured cells. Pretreatment of MDCKI cells with TGAME for up to 6 h significantly diminished COM crystal binding in a concentration-dependent manner. TGAME significantly inhibited AxA1 surface expression by immunofluorescence microscopy, whereas intracellular AxA1 increased. Western blot analysis confirmed AxA1 expression changes in the membrane and cytosolic fractions compound-treated cells, whereas whole cell AxA1 remained unchanged. TGAME also significantly decreased the size, number, and growth of calcium oxalate (CaOx) crystals induced in a Drosophila melanogaster MT model and possessed a potent antioxidant activity in a DPPH assay.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available