4.7 Article

Discovery of 4-((7H-Pyrrolo[2,3-d]pyrimidin-4-yl)amino)-N-(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1H-pyrazole-3-carboxamide (FN-1501), an FLT3-and CDK-Kinase Inhibitor with Potentially High Efficiency against Acute Myelocytic Leukemia

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 61, Issue 4, Pages 1499-1518

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jmedchem.7b01261

Keywords

-

Funding

  1. National Natural Science Foundation of China [81502925]
  2. Jiangsu Province
  3. Innovation Project for Postgraduates in Jiangsu Province [CX16B-008HH]

Ask authors/readers for more resources

A series of 1-H-pyrazole-3-carboxamide derivatives have been designed and synthesized that exhibit excellent FLT3 and CDK inhibition and antiproliferative activities. A structure-activity-relationship study illustrates that the incorporation of a pyrimidine-fused heterocycle at position 4 of the pyrazole is critical for FLT3 and CDK inhibition. Compound 50 (FN-1501), which possesses potent inhibitory activities against FLT3, CDK2, CDK4, and CDK6 with IC50 values in the nanomolar range, shows antiproliferative activities against MV4-11 cells (IC50: 0.008 mu M), which correlates with the suppression of retinoblastoma phosphorylation, FLT3, ERK, AKT, and STAT5 and the onset of apoptosis. Acute-toxicity studies in mice show that compound 50 (LD50: 186 mg/kg) is safer than AT7519 (32 mg/kg). In MV4-11 xenografts in a nude-mouse model, compound 50 can induce tumor regression at the dose of 15 mg/kg, which is more efficient than cytarabine (50 mg/kg). Taken together, these results demonstrate the potential of this unique compound for further development into a drug applied in acute-myeloid-leukemia (AML) therapeutics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available