4.5 Article

Synthesis and characterization of manganese containing mesoporous bioactive glass nanoparticles for biomedical applications

Journal

Publisher

SPRINGER
DOI: 10.1007/s10856-018-6070-4

Keywords

-

Funding

  1. Higher Education Commission (HEC) of Pakistan
  2. University of Seville (Spain) [P2017/837]

Ask authors/readers for more resources

Mesoporous bioactive glass (BG) nanoparticles based in the system: SiO2-P2O5-CaO-MnO were synthesized via a modified Stober process at various concentrations of Mn (0-7 mol %). The synthesized manganese-doped BG nanoparticles were characterized in terms of morphology, composition, in vitro bioactivity and antibacterial activity. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) analysis confirmed that the particles had spherical morphology (mean particle size: 110 nm) with disordered mesoporous structure. Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of Mn, Ca, Si and P in the synthesized Mn-doped BG particles. Moreover, X-ray diffraction (XRD) analysis showed that Mn has been incorporated in the amorphous silica network (bioactive glass). Moreover, it was found that manganese-doped BG particles form apatite crystals upon immersion in simulated body fluid (SBF). Inductively coupled plasma atomic emission spectroscopy (ICP-OES) measurements confirmed that Mn is released in a sustained manner, which provided antibacterial effect against Bacillus subtilis, Pseudomonas aeruginosa and Staphylococcus aureus. The results indicate that the incorporation of Mn in the bioactive glass network is an effective strategy to develop novel multifunctional BG nanoparticles for bone tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available