4.6 Article

Crystallization of electrically conductive visibly transparent ITO thin films by wavelength-range-specific pulsed Xe arc lamp annealing

Journal

JOURNAL OF MATERIALS SCIENCE
Volume 53, Issue 18, Pages 12949-12960

Publisher

SPRINGER
DOI: 10.1007/s10853-018-2534-7

Keywords

-

Funding

  1. AFRL through the Space Dynamics Laboratory, Utah State University [HQ0147-11-D-0052-0031]
  2. U.S. Department of Energy's National Nuclear Security Administration [DE-NA0003525]

Ask authors/readers for more resources

Transparent electric conductors made of indium tin oxide (ITO)-doped glass prepared by a flash lamp annealing (FLA) process were compared with ITO-doped glass prepared via a conventional rapid thermal annealing (RTA) process. Stylus surface profilometry was used to determine thicknesses, scanning electron microscopy was used to image surfaces, X-ray diffraction was used to determine film structures, X-ray photoelectron spectroscopy was used to determine oxidation states and film compositions, 4-point probe measurements were used to determine electrical conductivities, UV-Vis spectroscopy was used to determine film transparencies, and selective light filtering was used to determine which wavelengths of light are needed to anneal ITO into a visibly transparent electrically conductive thin film via an FLA process. The results showed that FLA with visible light can be used to nearly instantaneously anneal ITO to create visibly transparent and electrically conductive ITO thin films on glass. The FLA process achieved this by predominately exciting unoxidized indium, unoxidized tin, tin monoxide (SnO), and non-stoichiometric indium oxide (InO (x) ), appropriately distributed in an electron beam physical vapor-deposited amorphous ITO thin film, to allow their oxidation and crystallization into an electrically conductive visibly transparent ITO. Though it is possible to prepare ITO-doped glass that is more transparent with an RTA process, the FLA process is significantly faster, has comparable electrical conductivity, and can strongly localize heating to areas of the as-deposited ITO thin film that are not electrically conductive and visibly transparent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available