4.4 Article Proceedings Paper

Direct measurements of laser absorptivity during metal melt pool formation associated with powder bed fusion additive manufacturing processes

Journal

JOURNAL OF LASER APPLICATIONS
Volume 30, Issue 3, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.2351/1.5040636

Keywords

additive manufacturing; 3D printing; selective laser melting; powder bed fusion; optical absorption; laser keyhole; metal powder; metal liquid absorptivity

Funding

  1. U.S. Department of Energy [DE-AC52-07NA27344]

Ask authors/readers for more resources

Direct calorimetric measurements are used to study the effective optical absorptivity at 1070 nm laser wavelength for bulk and powder-coated discs of industrially relevant metals. Effective absorptivity is plotted as a function of nominal laser power from 30 up to 600 W for scanning velocities of 100, 500, and 1500 mm/s. The absorptivity versus power curves of the bulk materials typically shows a reduction in effective absorptivity until the beginning of the formation of a keyhole-type surface depression that is associated with an increased absorption of the laser light in the growing keyhole until a saturation value is reached. For powders, an additional plateau of higher absorptivity can be observed for low laser power, until the curves qualitatively collapse when full melting of the powder tracks is achieved. It is shown that, under conditions associated with laser powder-bed fusion additive manufacturing, absorptivity values can vary greatly, and differ from both room temperature powder layer measurements and liquid metal estimates from the literature. (C) 2018 Laser Institute of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available