4.7 Article

Interplay between Keratinocytes and Myeloid Cells Drives Dengue Virus Spread in Human Skin

Journal

JOURNAL OF INVESTIGATIVE DERMATOLOGY
Volume 138, Issue 3, Pages 618-626

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jid.2017.10.018

Keywords

-

Categories

Funding

  1. Government Pharmaceutical Organization of Thailand

Ask authors/readers for more resources

The skin is the site of dengue virus (DENV) transmission following the bite of an infected mosquito, but the contribution of individual cell types within skin to infection is unknown. We studied the dynamics of DENV infection in human skin explants using quantitative in situ imaging. DENV replicated primarily in the epidermis and induced a transient IFN-alpha response. DENV infected a wide range of cells, including Langerhans cells, macrophages, dermal dendritic cells, mast cells, fibroblasts, and lymphatic endothelium, but keratinocytes were the earliest targets of infection and made up 60% of infected cells over time. Virus inoculation led to recruitment and infection of Langerhans cells, macrophages, and dermal dendritic cells, and these cells emigrated from skin in increased numbers as a result of infection. DENV induced expression of proinflammatory cytokines and chemokines by infected keratinocytes. Blocking keratinocyte-derived IL-1 beta alone reduced infection of Langerhans cells, macrophages, and dermal dendritic cells by 75-90% and reduced the overall number of infected cells in dermis by 65%. These data show that the innate response of infected keratinocytes attracts virus-permissive myeloid cells that inadvertently spread DENV infection. Our findings highlight a role for keratinocytes and their interplay with myeloid cells in dengue.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available