4.7 Article

World energy consumption pattern as revealed by DMSP-OLS nighttime light imagery

Journal

GISCIENCE & REMOTE SENSING
Volume 53, Issue 2, Pages 265-282

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/15481603.2015.1124488

Keywords

electric power consumption; overall energy consumption; nighttime light; DMSP/OLS; socioeconomic factors; temperature

Funding

  1. Indiana University-Bloomington
  2. Indiana State University Collaborative Research [PIU 529]

Ask authors/readers for more resources

Remotely sensed nighttime light (NTL) from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) provides a spatially consistent and cost-effective mean to estimate energy consumption pattern. While previous researches have documented the application of NTL to predict electric power consumption (EPC) with varying degrees of success, few have systematically studied the possible factors affecting the EPC-NTL relationship. Moreover, no substantial research effort has been made to relate overall energy consumption (OEC) to NTL. This study investigated key factors governing the EPC/OEC-NTL relationship by examining the influences of affluence, urbanization, technology, temperature, and NTL pattern. Results show that EPC increased with higher per capital GDP, urbanization rate, and high-technology exports, and lower agricultural development, both globally and regionally. Meanwhile, EPC generally reduced with higher temperature and more agglomerate human activities. A strong OEC-NTL relationship was found; but the influencing factors to the OEC-NTL relationship varied across regions due to the natures of energy use. These factors must be considered especially for the studies of less-affluent regions where NTL was undetectable by the DMSP-OLS sensor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available