3.8 Proceedings Paper

Single-crystal fiber optics: a review

Journal

Publisher

SPIE-INT SOC OPTICAL ENGINEERING
DOI: 10.1117/12.2048212

Keywords

Infrared fiber optics; single-crystal fibers; oxide crystal fibers; fiber lasers

Ask authors/readers for more resources

Single-crystal (SC) fiber optics have been grown for many years for use as passive fibers for the delivery of IR laser radiation and as active fibers useful as minirod lasers. Most of the early work on SC fiber optics involved the growth of unclad sapphire fibers for the transmission of Er:YAG laser radiation at 2.94 mu m. More recently there has been a renewed interest in rare-earth (RE) doped oxide crystal fibers for use as high power fiber lasers. By analogy with RE doped-bulk laser crystals it is expected that pure YAG and other crystalline SC fibers should be capable of transmitting extremely high laser energies. SC oxide fibers have some distinct advantages over conventional glass fibers including higher thermal conductivity and low stimulated Brillouin scattering (SBS) gain coefficients. The latter can limit the ultimate power output of glass fiber lasers. To date most of the investigators have used the technique of Laser Heated Pedestal Growth (LHPG) to grow unclad SC fibers with diameters ranging from 30 to 350 mu m and in lengths as long as 5 m. The loss for SC sapphire fibers at 2.94 mu m has been measured as low as 0.3 dB/m. In this review we discuss the technique of LHPG, the various SC fiber optics that have been grown for both active and passive applications, and methods that may be used to clad the fibers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available