4.7 Article

Adsorptive removal of indole and quinoline from model fuel using adenine-grafted metal-organic frameworks

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 344, Issue -, Pages 593-601

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2017.10.041

Keywords

Adenine grafting; Adsorption; Denitrogenation; Metal-organic framework

Funding

  1. National Research Foundation of Korea (NRF) - Korea government (MSIP) [2017R1A2B2008774]

Ask authors/readers for more resources

A highly porous metal-organic framework (MOF), MIL-101, was modified for the first time with the nucleobase adenine (Ade) by grafting onto the MOF. The Ade-grafted MOF, Ade-MIL-101, was further protonated to obtain P-Ade-MIL-101, and these MOFs were utilized to remove nitrogen-containing compounds (NCCs) (such as indole (IND) and quinoline (QUI)) from a model fuel by adsorption. These functionalized MOFs exhibited remarkable adsorption performance for NCCs compared with that shown by commercial activated carbon (AC) and pristine MIL-101, even though the porosities of the functionalized-MOFs were lower than that of pristine MIL-101. P-Ade-MIL-101 has 12.0 and 10.8 times capacity to that of AC for IND and QUI adsorption, respectively; its adsorption performance was competitive with that of other reported adsorbents. The remarkable adsorption of IND and QUI by Ade-MIL-101 was attributed to H-bonding. H-bonding combined with cation-pi interactions was proposed as the mechanism for the removal of IND by P-Ade-MIL-101, whereas acid-base interactions were thought to be responsible for QUI adsorption by P-Ade-MIL-101. Moreover, P-Ade-MIL-101 can be regenerated without any severe degradation and used for successive adsorptions. Therefore, P-Ade-MIL-101 was recommended as an effective adsorbent for fuel purification by adsorptive removal of NCCs. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available