4.7 Article

Ultra-thin bimetallic alloy nanowires with porous architecture/monolayer MoS2 nanosheet as a highly sensitive platform for the electrochemical assay of hazardous omethoate pollutant

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 357, Issue -, Pages 466-474

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2018.06.021

Keywords

Monolayer MoS2; Bimetallic alloy nanowires; Organophosphate pesticides; AChE biosensors

Funding

  1. National Natural Science Foundation of China [21371149, 21671168]
  2. Natural Science Foundation of Hebei [B2016203498, 17964403D]

Ask authors/readers for more resources

A novel electrochemical biosensor was designed for sensitive detection of organophosphate pesticides based on three-dimensional porous bimetallic alloy architecture with ultrathin nanowires (PdCo NWs, PdCu NWs, PdNi NWs) and monolayer MoS2 nanosheet (m-MoS2). The bimetallic alloy NWs/m-MoS2 nanomaterials were used as a sensing platform for electrochemical analysis of omethoate, a representative organophosphate pesticide, via acetylcholinesterase inhibition pathway. We demonstrated that all three bimetallic alloy NWs enhanced electrochemical responses of enzymatic biosensor, benefited from bimetallic synergistic action and porous structure. In particular, PdNi NWs outperformed other two bimetallic alloy. Moreover, PdNi NWs/m-MoS2 as an electronic transducer is superior to the corresponding biosensor in the absence of monolayer MoS2 nanosheet, which arise from synergistic signal amplification effect between different components. Under optimized conditions, the developed biosensor on the basis of PdNi NWs/m-MoS2 shows outstanding performance for the electrochemical assay of omethoate, such as a wide linear range (10(-13) M similar to 10(-7)M), a low detection limit of 0.05 pM at a signal-to-noise ratio of 3, high sensitivity and long-time stability. The results demonstrate that bimetallic alloy NWs/m-MoS2 nanocomposites could be excellent transducers to promote electron transfer for the electrochemical reactions, holding great potentials in the construction of current and future biosensing devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available