4.7 Article

Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 346, Issue -, Pages 140-151

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2017.12.019

Keywords

Phosphorus/nitrogen co-doping; Graphene; Epoxy resin; Flame retardancy; Smoke suppression

Funding

  1. National Key Research and Development Program [2016YFB0302405]
  2. National Science Foundation of China [51210004, 51273073]

Ask authors/readers for more resources

Phosphorus and/or nitrogen doping is an effective method of improving the physical and chemical properties of reduced graphene oxide (rGO). In this work, phosphorus and nitrogen co-doped rGO (PN-rGO), synthesized using a scalable hydrothermal and microwave process, was used as an additive to improve the flame retardancy of epoxy resin (EP) for the first time. Chemical structure and morphology characterization confirmed that the nitrogen and phosphorus atoms were doped into the graphite lattice adopting pyrrolic-N, pyridinic-N, quaternary-N and pyrophosphate and metaphosphate forms. Doping increased the oxidization resistance of rGO and the thermal-oxidative stability of its composites' char, while also improving the catalytic charring ability of polymer. Both effects resulted in the formation of a stable char protective layer during burning and to a significant improvement in flame retardation and smoke suppression in the final composites. The peak heat release rate (PHRR), total heat release (THR) and total smoke production (TSP) for the EP-based composite (containing 5 wt% PN-rGO) decreased by 30.9%, 29.3% and 51.3%, respectively, compared to neat EP. Our work has produced a promising graphene-based flame retardant additive for the mass production of high-performance composites, also expended the application of heteroatom-doped graphene. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available