4.7 Article

Fire hazard of titanium powder layers mixed with inert nano TiO2 powder

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 346, Issue -, Pages 19-26

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2017.12.010

Keywords

Dust explosion; Layer fire; Dust layer; Metallic dust; Flame spread velocity

Funding

  1. National Key Research and Development Program [2017YFC0804703]
  2. National Natural Foundation of China [51374001, 51604175, 51474053]
  3. Fundamental Research Funds program for Central Universities [N150104001]
  4. General Project of the Education Department of Liaoning Province [L20150181]
  5. opening project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology) [KFJJ18-10M]

Ask authors/readers for more resources

Metallic dust layers are highly sensitive to ignition from common ignition sources, even when mixed with high percentages of inert solids. In turn, dust layer fires are a potential ignition source for dust explosions or other damaging fires. Flame spread velocity (FSV), as a potential parameter for evaluating fire hazard, was investigated for titanium powder layers mixed with inert nano TiO2 powder in both natural convection and in forced airflow conditions. Increased mass percentage of nano TiO2 powder decreased FSV of Ti powder mixtures as expected. The mixing ratio of nano TiO2 to fully suppress layer fires was 80% and 90% for micro and nano Ti powder, respectively. Mechanisms governing flame spread across a layer of nano Ti powder differed from those of a layer of micro Ti powder. FSV in no airflow conditions was higher than in aided airflow for micro Ti powder because conduction was the dominant heat transfer mechanism. However, FSV in no airflow was lower than in opposed airflow for nano Ti powder because convection/radiation was the dominant heat transfer mechanism. A fly fire phenomenon contributed to greater FSVs and higher fire hazard with nano Ti powder mixtures under aided airflow conditions. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available