4.7 Article

In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 342, Issue -, Pages 724-731

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2017.08.066

Keywords

Arsenic; Fe-Mn binary oxide; Remediation; Soil; Lead

Funding

  1. EPSRC [EP/E0441/17, EP/1025782/1]
  2. EPSRC [EP/E044417/1, EP/E044670/1, EP/G028958/1] Funding Source: UKRI

Ask authors/readers for more resources

The ability of a Fe-Mn binary oxide waste to adsorb arsenic (As) in a historically contaminated soil was investigated. Initial laboratory sorption experiments indicated that arsenite [As(III)] was oxidized to arsenate [As(V)] by the Mn oxide component, with concurrent As(V) sorption to the Fe oxide. The binary oxide waste had As(III) and As(V) adsorption capacities of 70 mg g(-1) and 32 mg g(-1) respectively. X-ray Absorption Near-Edge Structure and Extended X-ray Absorption Fine Structure at the As K-edge confirmed that all binary oxide waste surface complexes were As(V) sorbed by mononuclear bidentate corner-sharing, with 2 Fe at 3.27 A. The ability of the waste to perform this coupled oxidation-sorption reaction in real soils was investigated with a 10% by weight addition of the waste to an industrially As contaminated soil. Electron probe microanalysis showed As accumulation onto the Fe oxide component of the binary oxide waste, which had no As innately. The bioaccessibility of As was also significantly reduced by 7.80% (p < 0.01) with binary oxide waste addition. The results indicate that Fe-Mn binary oxide wastes could provide a potential in situ remediation strategy for As and Pb immobilization in contaminated soils. Crown Copyright (C) 2017 Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available