4.7 Article

Biocompatible FeOOH-Carbon quantum dots nanocomposites for gaseous NOx removal under visible light: Improved charge separation and High selectivity

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 354, Issue -, Pages 54-62

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2018.04.071

Keywords

NOx purification; CQDs/FeOOH photocatalyst; DFT calculation; Charge carrier separation; Degradation mechanism

Funding

  1. National Key Research and Development Program of China [2016BBBMBYFA0203000]
  2. State Key Lab of Loess and Quaternary Geology [SKLLQGPY1605]
  3. National Science Foundation of China [41401567, 41573138]
  4. Hundred Talent Program of the Chinese Academy of Sciences

Ask authors/readers for more resources

Development of biocompatible photocatalysts with improved charge separation and high selectivity is essential for effective removal of air pollutants. Iron-containing catalysts have attracted extensive attention due to their low-toxicity and high natural abundance. Here, carbon quantum dots (CQDs) modified FeOOH nanocomposites fabricated using a facile hydrothermal route showed enhanced NO removal efficiency (22%) compared to pure FeOOH. Moreover, generation of toxic NO2 intermediates was significantly inhibited using the nanocomposites, demonstrating high selectivity for final nitrate formation. Photo-electrochemical results showed that both charge separation and transfer efficiency were significantly improved by CQDs addition, and the lifetime of photo-generated carriers was increased eventually. Density functional theory calculations further elucidated that the suppressed recombination of photo-induced electron-hole pairs was due to enhanced electron migration from the FeOOH to CQDs. A NO degradation mechanism was proposed based on detection of the reactive oxygen species using electron paramagnetic spectroscopy. In addition, the nanocomposite showed good biocompatibility and low cytotoxity, ensuring minimal environmental impact for potential application in large-scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available