4.7 Article

Synthesis and characterization of CoOx/BiVO4 photocatalysts for the degradation of propyl paraben

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 372, Issue -, Pages 52-60

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2018.03.008

Keywords

Bismuth vanadate; Cobalt oxide; Endocrine disruptors; Parabens; Solar photocatalysis; Water matrix; Band offset

Ask authors/readers for more resources

Cobalt-promoted bismuth vanadate photocatalysts of variable cobalt content (0-1.0 wt.%) were synthesized and characterized with various techniques including BET, XRD, DRS, XPS and TEM. BiVO4 exists in the monoclinic scheelite structure, while cobalt addition improves the absorbance in the visible region although it does not affect the band gap energy of BiVO4. Cobalt exists in the form of well-dispersed Co3O4 nanocrystallites, which are in intimate contact with the much larger BiVO4 nanoparticles. Photocatalytic activity was evaluated for the degradation of propyl paraben (PP) under simulated solar radiation. The activity of pristine BiVO4 is significantly improved adding small amounts of cobalt and is maximized for the catalyst containing 0.5 wt.% Co. PP degradation in ultrapure pure water increases with increasing photocatalyst loading (100 mg/L to 1.5 g/L), and decreasing PP concentration (1600-200 mu g/L). Experiments in bottled water, as well as in pure water spiked with bicarbonate and chloride ions showed little effect of non-target inorganics on degradation. Conversely, degradation is severely impeded in secondary treated wastewater. The enhancement of the photocatalytic activity of the synthesized catalysts is attributed to efficient electron-hole separation, achieved at the p-n junction formed between the p-type Co3O4 and the n-type BiVO4 semiconductors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available