4.7 Article

Biodegradation of pyraclostrobin by two microbial communities from Hawaiian soils and metabolic mechanism

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 354, Issue -, Pages 225-230

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhazmat.2018.04.067

Keywords

Pyraclostrobin; Microfloras; Detoxification; Pseudomonas; Metabolic mechanism

Funding

  1. National Natural Science Foundation of China [31500034]
  2. Fundamental Research Funds for the Central Universities [FRF-BR-15-006 A]

Ask authors/readers for more resources

Pyraclostrobin has been widely and long-termly applicated to agricultural fields. The removal of pyraclostrobin from ecological environment has received wide attention. In this study, using sequential enrichments with pyraclostrobin as a sole carbon source, two microbial communities (HI2 and HI6) capable of catabolizing pyraclostrobin were obtained from Hawaiian soils. The microfloras analysis indicated that only Proteobacteria and Bacteroides could survive in HI2-soil after acclimatization, whereas the number of Proteobacteria in HI6-soil accounted for more than 99%. The percentages of Pseudomonas in the HI2 and HI6 microfloras were 69.3% and 59.3%, respectively. More than 99% of pyraclostrobin (C-o = 100 mg L-1) was degraded by the HI2 and HI6 microorganisms within five days. A unique metabolite was identified by high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS/MS). A metabolic pathway involving carbamate hydrolysis was proposed. The tertiary amine group of pyraclostrobin was hydrolyzed to primary amine group with the decarboxylation, which facilitated pyraclostrobin detoxification because carboxylester was an important functional group. The metabolic mechanism suggested that Pseudomonas expressing carboxylesterase might be able to degrade carbamate chemicals. Therefore, Pseudomonas might be an ideal candidate for expression and cloning of carbamate-degrading gene in genomics studies. The current study would have important implications in detoxification and bioremediation of carbamates through the C-N bond cleavage of methyl carbamate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available