4.6 Article

Real-Time Optimal Control via Deep Neural Networks: Study on Landing Problems

Journal

JOURNAL OF GUIDANCE CONTROL AND DYNAMICS
Volume 41, Issue 5, Pages 1122-1135

Publisher

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.G002357

Keywords

-

Ask authors/readers for more resources

Recent research has shown the benefits of deep learning, a set of machine learning techniques able to learn deep architectures, for modelling robotic perception and action. In terms of a spacecraft navigation and control system, this suggests that deep architectures may be considered now to drive all or part of the onboard decision-making system. In this paper, this claim is investigated in more detail, training deep artificial neural networks to represent the optimal control action during a pinpoint landing and assuming perfect state information. It is found possible to train deep networks for this purpose, and the resulting landings, driven by the trained networks, are close to simulated optimal ones. These results allow for the design of an onboard real-time optimal control system able to cope with large sets of possible initial states while still producing an optimal response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available