4.3 Article

A kinetic account for amphetamine-induced monoamine release

Journal

JOURNAL OF GENERAL PHYSIOLOGY
Volume 150, Issue 3, Pages 431-451

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1085/jgp.201711915

Keywords

-

Categories

Funding

  1. Austrian Science Fund (FWF) [P28090, SFB35, F3510]
  2. Cell Communication in Health and Disease doctoral program - Austrian Science Fund [W1205]
  3. Medical University of Vienna
  4. Medical University of Vienna via an MD/PhD fellowship
  5. Austrian Science Fund (FWF) [P28090] Funding Source: Austrian Science Fund (FWF)

Ask authors/readers for more resources

The plasmalemmal monoamine transporters for dopamine, norepinephrine, and serotonin (SERT) are targets for amphetamines. In vivo, amphetamines elicit most, if not all, of their actions by triggering monoamine efflux. This is thought to be accomplished by an amphetamine-induced switch from the forward-transport to the substrate-exchange mode. The mechanism underlying this switch has remained elusive; available kinetic models posit that substrates and cosubstrate Na+ ions bind either in a random or in a sequential order. Neither can account for all reported experimental observations. We used electrophysiological recordings to interrogate crucial conformational transitions associated with the binding of five different substrates (serotonin, para-chloroamphetamine, and the high-affinity naphthyl-propan-amines PAL-287, PAL-1045, and PAL-1046) to human SERT expressed in HEK293 cells; specifically, we determined the relaxation kinetics of SERT from a substrate-loaded to a substrate-free state at various intracellular and extracellular Na+ concentrations. These rates and their dependence on intracellular and extracellular Na+ concentrations differed considerably between substrates. We also examined the effect of K+ on substrate affinity and found that K+ enhanced substrate dissociation. A kinetic model was developed, which allowed for random, but cooperative, binding of substrate and Na+ (or K+). The synthetic data generated by this model recapitulated the experimental observations. More importantly, the cooperative binding model accounted for the releasing action of amphetamines without any digression from alternating access. To the best of our knowledge, this model is the first to provide a mechanistic framework for amphetamine-induced monoamine release and to account for the findings that some substrates are less efficacious than others in promoting the substrate-exchange mode.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available