3.8 Proceedings Paper

Response Surface Optimization of Trace Element Requirement for the Production of Volatile Fatty Acids from Excess Sludge

Publisher

TRANS TECH PUBLICATIONS LTD
DOI: 10.4028/www.scientific.net/AMR.878.663

Keywords

Excess sludge; Volatile fatty acids; Response surface; Optimization; Anaerobic fermentation

Ask authors/readers for more resources

Anaerobic microorganisms involved in VFAs fermentation have inherent requirements for trace metals. It is inferred that excess sludge contains inadequate amounts of bioavailable trace metals for high-rate VFAs fermentation. The unavailability of these trace metals is probably the primary reason of poor yield without any other obvious reason. However, trace metal requirements in VFAs fermentation are not often reported in literature. Therefore, minimum requirements for trace metals including Zn, Co, Cu, Fe and Mn in VFAs fermentation from excess sludge were investigated. Firstly, the effect of each trace metal element on the VFAs production was investigated, respectively. And then, response surface methology was employed to optimize the requirement conditions of these five trace elements. The results showed that these five metal elements had the potential to enhance the production of VFAs, and the improved influences were as follows: Fe > Co > Mn > Cu > Zn. However, the production of VFAs decreased obviously with a further increase of each trace element. The optimal mixed conditions of these five trace elements were found to be 0.0982% Fe, 0.0047% Co, 0.0053% Zn, 0.0038% Cu and 0.0936% Mn. Under the optimal conditions, the concentration of VFAs reached 8410 mg/L, and increased by 2.5 times compare with the control. Finally, the consistent results between the prediction and the experiment indicated that the established polynomial model was feasible, and VFAs production could be described well by this model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available