4.6 Article

Contribution of 2-Propenesulfenic Acid to the Antioxidant Activity of Allicin

Journal

JOURNAL OF FOOD SCIENCE
Volume 83, Issue 5, Pages 1265-1270

Publisher

WILEY
DOI: 10.1111/1750-3841.14145

Keywords

allicin; 2-propenesulfenic acid; thiosulfinate; cope elimination; alpha-sulfenyl proton

Ask authors/readers for more resources

We re-examined the antioxidative mechanism of allicin as a radical scavenger on the basis of the reactivity toward 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and peroxyl radicals. Initially, it was found that allicin decomposed more rapidly in n-hexane and chlorobenzene than in acetonitrile, ethanol, and ethanol/water solutions and decomposed into ajoene and vinyldithiins in these solvents. Furthermore, the decomposition of allicin and the following formations of ajoene and vinyldithiins from allicin were accelerated by the reaction of allicin with DPPH and peroxyl radicals. These results show that 2-propenesulfenic acid, which arises by Cope elimination from allicin, is proposed to contribute to scavenge these radicals because ajoene and vinyldithiins were produced from allicin through the use of 2-propenesulfenic acid. Next, allicin was more effective at inhibiting the linoleic acid oxidation at 50 degrees C than at 30 degrees C and in cyclohexane than in acetonitrile. These results indicate that allicin decomposed rapidly at high temperatures in a hydrogen-bond-acceptor solution to 2-propenesulfenic acid. In addition, 2-propene-1-sulfinothionic acid S-methyl ester, which does not produce sulfenic acid through Cope elimination, has no activity against the radicals. On the other hand, methanesulfinothionic acid S-2-propenyl ester, which produces methanesulfenic acid through Cope elimination, has the same or increased activity as its allicin against the radicals. Based on these results, the Cope elimination product, sulfenic acid, from thiosulfinates with an alpha-sulfenyl proton was found to make a larger contribution to the radical scavenger than that of allicin itself.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available