4.8 Article

Highly Porous 3D Fibrous Nanostructured Bioplolymer Films with Stimuli-Responsive Porosity via Phase Separation in Polymer Blend

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 7, Issue 23, Pages 12463-12469

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am5076327

Keywords

alginate; nanostructured thin film; polymer blend; porous material; membrane

Ask authors/readers for more resources

The article describes a novel polymer blend system that yields thin films with unique porous nanoscale morphologies and environmentally responsive properties. The blend consists of sodium alginate and amine end-terminated PEG, which undergoes phase separation during film deposition. The blend films can be readily converted into highly porous membranes using facile treatment with a solution containing divalent ions. The resulting membranes are primarily comprised of alginate hydrogel, whereas the PEG phase is removed from the films during exposure to the saline solution, yielding nanometer-sized pores. The alginate gel phase forms a three-dimensional nanostructure which can be best described as a filament or fibrous network. Because such network geometry is untypical of polymer blends in thin films, possible reasons for the observed phase morphology are discussed. Because of ionizable carboxyl groups, the hydrogel membranes demonstrate responsive behavior, in particular a drastic change in their porosity between a highly porous state and a state with completely closed pores in response to changes in the solution pH. The pore-size tunability can be explored in multiple applications where the regulation of material's permeability is needed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available