4.7 Article

Boundary control in computational haemodynamics

Journal

JOURNAL OF FLUID MECHANICS
Volume 847, Issue -, Pages 329-364

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2018.329

Keywords

blood flow; control theory; variational methods

Ask authors/readers for more resources

In this work, a data assimilation method is proposed following an optimise-thendiscretise approach, and is applied in the context of computational haemodynamics. The methodology aims to make use of phase-contrast magnetic resonance imaging to perform optimal flow control in computational fluid dynamic simulations. Flow matching between observations and model predictions is performed in lumina' regions, excluding near-wall areas, improving the near-wall flow reconstruction to enhance the estimation of related quantities such as wall shear stresses. The proposed approach remarkably improves the flow field at the aortic root and reveals a great potential for predicting clinically relevant haemodynamic phenomenology. This work presents model validation against an analytical solution using the standard 3-D Hagen-Poiseuille flow, and validation with real data involving the flow control problem in a glass replica of a human aorta imaged with a 3T magnetic resonance scanner. In vitro experiments consist of both a numerically generated reference flow solution, which is considered as the ground truth, as well as real flow MRI data obtained from phase-contrast flow acquisitions. The validation against the in vitro flow MRI experiments is performed for different flow regimes and model parameters including different mesh refinements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available