4.7 Article

Dynamics of a liquid plug in a capillary tube under cyclic forcing: memory effects and airway reopening

Journal

JOURNAL OF FLUID MECHANICS
Volume 838, Issue -, Pages 165-191

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2017.828

Keywords

interfacial flows (free surface); microfluidics; micro-/nano-fluid dynamics

Funding

  1. Universite de Lille

Ask authors/readers for more resources

In this paper, we investigate both experimentally and theoretically the dynamics of a liquid plug driven by a cyclic periodic forcing inside a cylindrical rigid capillary tube. First, it is shown that, depending on the type of forcing (flow rate or pressure cycle), the dynamics of the liquid plug can either be stable and periodic, or conversely accelerative and eventually leading to plug rupture. In the latter case, we identify the sources of the instability as: (i) the cyclic diminution of the plug viscous resistance to motion due to the decrease in the plug length and (ii) a cyclic reduction of the plug interfacial resistance due to a lubrication effect. Since the flow is quasi-static and the forcing periodic, this cyclic evolution of the resistances relies on the existence of flow memories stored in the length of the plug and the thickness of the trailing film. Second, we show that, contrary to unidirectional pressure forcing, cyclic forcing enables breaking of large plugs in a confined space although it requires longer times. All the experimentally observed tendencies are quantitatively recovered from an analytical model. This study not only reveals the underlying physics but also opens up the prospect for the simulation of breathing' of liquid plugs in complex geometries and the determination of optimal cycles for obstructed airways reopening.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available