4.7 Article

DNS of compressible turbulent boundary layers and assessment of data/scaling-law quality

Journal

JOURNAL OF FLUID MECHANICS
Volume 842, Issue -, Pages 428-468

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2018.179

Keywords

compressible boundary layers; compressible turbulence; turbulent boundary layers

Funding

  1. Deutsche Forschungsgemeinschaft, DFG [RI680/31-1]
  2. grant GCS Lamt (LAMTUR)
  3. DFG Collaborative Research Center [SFB/TRR 40(A4)]

Ask authors/readers for more resources

A direct-numerical-simulation study of spatially evolving compressible zero-pressure-gradient turbulent boundary layers is presented for a fine-meshed range of Mach numbers from 0.3 to 2.5. The use of an identical set-up for all subsonic and supersonic cases warrants proper comparability and allows a highly reliable quantitative evaluation of compressible mean-flow scaling laws and the settlement on a commonly accepted compressible mean-flow velocity profile in the considered Mach and Reynolds number range. All data are compared to the literature data-base where significant data scattering can be observed. The skin-friction distribution was found in excellent agreement with the prediction by the van Driest-II transformation. Contrary to the prevailing appraisal, the wake region of the mean-velocity profile is observed to scale much better with the momentum-thickness Reynolds number calculated with the far-field-viscosity than with the wall-viscosity. The time-averaged velocity fluctuations, density-scaled according to Morkovin's hypothesis, are found to be noticeably influenced by compressibility effects in the inner layer as well as in the wake region. Allowing wall-temperature fluctuations affects neither the density nor velocity fluctuations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available