4.7 Article

TAK1 restricts spontaneous NLRP3 activation and cell death to control myeloid proliferation

Journal

JOURNAL OF EXPERIMENTAL MEDICINE
Volume 215, Issue 4, Pages 1023-1034

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.20171922

Keywords

-

Funding

  1. National Institutes of Health [CA163507, AR056296, AI124346, AI101935]
  2. American Lebanese Syrian Associated Charities (ALSAC)

Ask authors/readers for more resources

The NOD-like receptor (NLR)-P3 inflammasome is a global sensor of infection and stress. Elevated NLRP3 activation levels are associated with human diseases, but the mechanisms controlling NLRP3 inflammasome activation are largely unknown. Here, we show that TGF-beta activated kinase-1 (TAK1) is a central regulator of NLRP3 inflammasome activation and spontaneous cell death. Absence of TAK1 in macrophages induced spontaneous activation of the NLRP3 inflammasome without requiring toll-like receptor (TLR) priming and subsequent activating signals, suggesting a distinctive role for TAK1 in maintaining NLRP3 inflammasome homeostasis. Autocrine tumor necrosis factor (TNF) signaling in the absence of TAK1 induced spontaneous RIPK1-dependent NLRP3 inflammasome activation and cell death. We further showed that TAK1 suppressed homeostatic NF-kappa B and extracellular signal-related kinase (ERK) activation to limit spontaneous TNF production. Moreover, the spontaneous inflammation resulting from TAK1-deficient macrophages drives myeloid proliferation in mice, and was rescued by RIPK1 deficiency. Overall, these studies identify a critical role for TAK1 in maintaining NLRP3 inflammasome quiescence and preserving cellular homeostasis and survival.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available