4.7 Article

Short-term effects of defoliation intensity on sugar remobilization and N fluxes in ryegrass

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 69, Issue 16, Pages 3975-3986

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/ery211

Keywords

Defoliation; fructans; Lolium perenne L.; nitrogen; remobilization; sucrose; uptake

Categories

Funding

  1. INRA
  2. French Ministry for Research
  3. Conseil Regional Basse-Normandie

Ask authors/readers for more resources

In grassland plant communities, the ability of individual plants to regrow after defoliation is of crucial importance since it allows the restoration of active photosynthesis and plant growth. The aim of this study was to evaluate the effects of increasing defoliation intensity (0, 25, 65, 84, and 100% of removed leaf area) on sugar remobilization and N uptake, remobilization, and allocation in roots, adult leaves, and growing leaves of ryegrass over 2 days, using a N-15 tracer technique. Increasing defoliation intensity decreased plant N uptake in a correlative way and increased plant N remobilization, but independently. The relative contribution of N stored before defoliation to leaf growth increased when defoliation intensity was severe. In most conditions, root N reserves also contributed to leaf regrowth, but much less than adult leaves and irrespective of defoliation intensity. A threshold of defoliation intensity (65% leaf area removal) was identified below which C (glucose, fructose, sucrose, fructans), and N (amino acids, soluble proteins) storage compounds were not recruited for regrowth. By contrast, nitrate content increased in elongating leaf bases above this threshold. Wounding associated with defoliation is thus not the predominant signal that triggers storage remobilization and controls the priority of resource allocation to leaf meristems. A framework integrating the sequential events leading to the refoliation of grasses is proposed on the basis of current knowledge and on the findings of the present work.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available