4.7 Article

Biomass increase under zinc deficiency caused by delay of early flowering in Arabidopsis

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 69, Issue 5, Pages 1269-1279

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erx478

Keywords

Cell proliferation; leaf length; micronutrient; natural variation; nutrition; rosette diameter; vegetative growth

Categories

Funding

  1. China Scholarship Council

Ask authors/readers for more resources

Plants generally produce more biomass when all nutrients are available in sufficient amounts. In addition to environmental constraints, genetic and developmental factors, such as the transition from vegetative to reproductive growth, restrict maximal biomass yield. Here, we report the peculiar observation that a subset of Arabidopsis thaliana accessions produced larger shoot rosette diameters when grown in zinc (Zn)-deficient conditions, compared with Zn-sufficient conditions. This was associated with early flowering that restricted the leaf length under Zn sufficiency. Zinc deficiency repressed the expression of FLOWERING LOCUS T (FT), which encodes a major regulator of flowering. Repression or loss of FT increased the rosette diameter via a delay of the transition to flowering, a longer phase of leaf growth, and an increased leaf number. The transition to flowering reduced, but did not terminate, the proliferation of established leaves. The size of individual leaf mesophyll cells was not affected by Zn deficiency or by loss of FT, indicating that the larger rosette diameter was caused by maintained proliferation of vegetative tissue. As a consequence, early-flowering accessions under Zn deficiency grew to have larger rosette diameters due to a delay of flowering, which explains the unusual increase of vegetative biomass under nutrient deficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available