4.5 Article

Adaptive sonar call timing supports target tracking in echolocating bats

Journal

JOURNAL OF EXPERIMENTAL BIOLOGY
Volume 221, Issue 18, Pages -

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.176537

Keywords

Eptesicus fuscus; Sonar sound groups; Auditory localization; Sonar ranging

Categories

Funding

  1. Human Frontiers Science Program [RGP0040]
  2. Office of Naval Research [N00014-12-1-0339, N00014-17-1-2736]
  3. Air Force Office of Scientific Research [FA9550-14-1-0398]
  4. National Science Foundation [IOS1460149, 1734744, NSF PHY11-25915]
  5. Division Of Undergraduate Education
  6. Direct For Education and Human Resources [1734744] Funding Source: National Science Foundation

Ask authors/readers for more resources

Echolocating bats dynamically adapt the features of their sonar calls as they approach obstacles and track targets. As insectivorous bats forage, they increase sonar call rate with decreasing prey distance, and often embedded in bat insect approach sequences are clusters of sonar sounds, termed sonar sound groups (SSGs). The bat's production of SSGs has been observed in both field and laboratory conditions, and is hypothesized to sharpen spatiotemporal sonar resolution. When insectivorous bats hunt, they may encounter erratically moving prey, which increases the demands on the bat's sonar imaging system. Here, we studied the bat's adaptive vocal behavior in an experimentally controlled insect-tracking task, allowing us to manipulate the predictability of target trajectories and measure the prevalence of SSGs. With this system, we trained bats to remain stationary on a platform and track a moving prey item, whose trajectory was programmed either to approach the bat, or to move back and forth, before arriving at the bat. We manipulated target motion predictability by varying the order in which different target trajectories were presented to the bats. During all trials, we recorded the bat's sonar calls and later analysed the incidence of SSG production during the different target tracking conditions. Our results demonstrate that bats increase the production of SSGs when target unpredictability increases, and decrease the production of SSGs when target motion predictability increases. Furthermore, bats produce the same number of sonar vocalizations irrespective of the target motion predictability, indicating that the animal's temporal clustering of sonar call sequences to produce SSGs is purposeful, and therefore involves sensorimotor planning.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available