4.5 Article

A pathogenic skin fungus and sloughing exacerbate cutaneous water loss in amphibians

Journal

JOURNAL OF EXPERIMENTAL BIOLOGY
Volume 221, Issue 9, Pages -

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.167445

Keywords

Batrachochytrium dendrobatidis; Chytridiomycosis; Cutaneouswater loss; Dehydration; Fungal pathogen; Skin shedding

Categories

Funding

  1. University of Queensland Research Allocation

Ask authors/readers for more resources

Batrachochytrium dendrobatidis (Bd) is a pathogenic fungus that causes the cutaneous, infectious disease chytridiomycosis and has been implicated in population declines of numerous anuran species worldwide. Proximate cause of death by chytridiomycosis is asystolic cardiac arrest as a consequence of severe disruption to electrolyte balance. Animals heavily infected with Bd also experience a disruption to their skin sloughing regime, indicating that core functions of the skin, such as water retention, may be severely impacted. This study examined how skin sloughing, body size and Bd infection interact to influence water loss rates in five Australian frog species: Litoria caerulea, Limnodynastes peronii, Lechriodus fletcheri, Limnodynastes tasmaniensis and Platyplectrum ornatum. Rates of water loss more than doubled during sloughing in L. caerulea. During active periods across all species, water loss rates were on average 232% higher in Bd infected frogs than in uninfected frogs. This indicates that dehydration stress may be a significant factor contributing to the morbidity of severely Bd infected anurans, a symptom that is then exacerbated by an increased rate of sloughing. When taking size into account, smaller and/or juvenile anurans may be more at risk from dehydration due to Bd infection, as they lose a greater amount of water and slough more frequently than adults. This may in part explain the higher mortality rates typical for small and juvenile frogs infected with Bd. Understanding how Bd affects the core functions of the skin, including rates of water loss, can improve our predictions of disease outcome in amphibians.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available