4.2 Article

Effective adsorption of sulfamethoxazole, bisphenol A and methyl orange on nanoporous carbon derived from metal-organic frameworks

Journal

JOURNAL OF ENVIRONMENTAL SCIENCES
Volume 63, Issue -, Pages 250-259

Publisher

SCIENCE PRESS
DOI: 10.1016/j.jes.2017.10.019

Keywords

Nanoporous carbon; MOFs; Adsorption; Sulfamethoxazole; Bisphenol A; Methyl orange

Funding

  1. National Natural Science Foundation of China [21437001, 21407019]
  2. Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology [QA201617]

Ask authors/readers for more resources

Nanoporous carbons (NPCs) derived from metal-organic frameworks (MOFs) are attracting increasing attention inmany areas by virtue of their high specific surface area, large pore volume and unique porosity. The present work reports the preparation of an NPC with high surface area (1731 m(2)/g) and pore volume (1.68 cm(3)/g) by direct carbonization of MOF-5. We examined the adsorption of three typical contaminants from aqueous solutions, i. e., sulfamethoxazole (SMX), bisphenol A (BPA) and methyl orange (MO), by using the as-prepared NPC. The results demonstrated that NPC could adsorb the contaminants effectively, with adsorption capacity (qm) of 625 mg/g (SMX), 757 mg/g (BPA) and 872 mg/g (MO), respectively. These values were approximately 1.0-3.2 times higher than those obtained for single-walled carbon nanotubes (SWCNTs) and commercial powder active carbon (PAC) under the same conditions. With its high surface area and unique meso/macropore structure, the enhanced adsorption ofNPCmost likely originates fromthe cooperative interaction of a pore-fillingmechanism, electrostatic interaction, and hydrogen bonding. In particular, the pH value has a crucial impact on adsorption, suggesting the significant contribution of electrostatic interaction between NPC and the contaminants. This study provides a proof-of-concept demonstration of MOF-derived nanoporous carbons as effective adsorbents of contaminants for water treatment. (C) 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available