4.2 Article

Influence of metal-contamination on distribution in subcellular fractions of the earthworm (Metaphire californica) from Hunan Province, China

Journal

JOURNAL OF ENVIRONMENTAL SCIENCES
Volume 73, Issue -, Pages 127-137

Publisher

SCIENCE PRESS
DOI: 10.1016/j.jes.2018.01.021

Keywords

Heavy metals; Metaphire californica; Subcellular fractions; South China

Funding

  1. National Natural Science Foundation of China [41471410]
  2. Key Beijing Discipline of Ecology [XK10019440]

Ask authors/readers for more resources

Earthworms have the ability to accumulate of heavy metals, however, there was few studies that addressed the metals in earthworm at subcellular levels in fields. The distributions of metals (Cd, Cu, Zn, and Pb) in subcellular fractions (cytosol, debris, and granules) of earthworm Metaphire californica were investigated. The relationship between soil metals and earthworms were analyzed to explain its high plasticity to inhabit in situ contaminated soil of Hunan Province, south China. The concentration of Cd in subcellular compartments showed the same pattern as Cu in the order of cytosol > debris > granules. The distribution of Zn and Pb in earthworms indicated a similar propensity for different subcellular fractions that ranked as granules > debris > cytosol for Zn, and granules > cytosol > debris for Pb. The internal metal concentrations in earthworms increased with the soil metals (p < 0.05). Significant positive correlations were found between soil Cd and Cd concentrations in cytosol and debris (p < 0.01). Moreover, the soil Pb concentration significantly influenced the Pb concentrations in cytosol and debris (p < 0.01), similar to that of Cd. The soil Cu concentrations was only associated with the Cu in granules (p < 0.05). Soil Zn concentrations correlated with the Zn concentrations in each subcellular fraction (p < 0.05). Our results provide insights into the variations of metals partitioning in earthworms at subcellular levels and the relationships of soil metals, which could be one of the detoxification strategies to adapt the long-term contaminated environment. (C) 2018 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available