4.4 Article

Nonlinear Vibration Analysis of an Elastic Rotor Supported on Angular Contact Ball Bearings Considering Six Degrees of Freedom and Waviness on Balls and Races

Publisher

ASME
DOI: 10.1115/1.4027712

Keywords

elastic deformation in shaft; angular contact ball bearings; frequency domain analysis; waviness on ball and races; six degrees of freedom

Ask authors/readers for more resources

Nonlinear vibration analysis of an elastically deformable shaft supported on two lubricated angular contact ball bearings is reported herein considering six-degrees of freedom (6-DOF) and waviness on races and balls. This is an extension work of the investigation published by the authors Babu, C. K., Tandon, N., and Pandey, R. K., 2012, Vibration Modeling of a Rigid Rotor Supported on the Lubricated Angular Contact Ball Bearings Considering Six Degree of Freedom and Waviness on Balls and Races, ASME J. Vib. Acoust., 134, p. 011006. Elastic deformation of shaft, frictional moment, and waviness on races and balls have been incorporated in the model for the vibration investigations of rotor's CG. Two noded 3D Timoshenko beam element having 6-DOF has been employed in the computation of the shaft's deformation. Governing equations with appropriate boundary conditions have been solved using 4th order Runge-Kutta method. It is observed that vibration amplitude enhances considerably after incorporating the elastic deformation in comparison to the amplitude achieved using rigid rotor model approach. Moreover, the influence of outer race's radial waviness is large on the amplitudes of vibrations in comparison to radial waviness of inner race. However, it is worth noting here that in case of rigid rotor model the presence of radial waviness on inner race yields high amplitudes of vibrations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available