4.7 Article

Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II)

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 215, Issue -, Pages 143-152

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2018.03.055

Keywords

Urease; Bioremediation; Cadmium (II); Serratia marcescens; Enterobacter cloacae EMB19

Funding

  1. Science and Engineering Research Board-Department of Science & Technology, Govt. of India [PDF/2015/000234]

Ask authors/readers for more resources

In the present study, urease positive Serratia marcescens (NCIM2919) and Enterobacter cloacae EMB19 (MTCC10649) were individually evaluated for remediation of cadmium (II) using ureolysis-induced calcium carbonate precipitation. Both the cultures were observed to efficiently remove cadmium from the media through co-precipitation of Cd (II) and Ca (II).S. marcescens and E. cloacae EMB19, respectively showed 96 and 98% removal of initial 5.0 mg L-1 soluble Cd (II) from the urea and CaCl2 laden media at 96 h of incubation period. At higher Cd (II) concentrations of 10 and 15 mg L-1, cadmium removal efficiency was much higher in case of E. cloacae EMB19 compared to S. marcescens. In-vitro cadmium (II) remediation study using urease containing cell-free culture supernatant of S. marcescens and E. cloacae EMB19 showed respective 98 and 53% removal of initial 50 mg L-1 Cd (II) from the reaction mixtures in co-presence of Ca (II). While in sole presence of Cd (II), only 16 and 8% removal of Cd (II) were detected for S. marcescens and E. cloacae EMB19, respectively. The elemental analysis of the co-precipitated mineral products using Energy Dispersive X-ray spectroscopy (EDX) clearly showed the prevalence of Ca and Cd ions. The morphology Cd-Ca composites formed with respect to both the cultures were observed to be of different shape and size as revealed through Scanning Electron Microscopy (SEM). Entire study hence comes out with a sustainable bioremediation option which could be effectively used to tackle Cd (II) or other heavy metal pollution. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available