4.7 Article

The effect of climate change and emission scenarios on ozone concentrations over Belgium: a high-resolution model study for policy support

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 14, Issue 12, Pages 5893-5904

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-14-5893-2014

Keywords

-

Funding

  1. Science for a Sustainable Development (SSD) program of the Belgian Science Policy Office (BELSPO) [SD/CS/04A]

Ask authors/readers for more resources

Belgium is one of the areas within Europe experiencing the highest levels of air pollution. A high-resolution (3 km) modelling experiment is employed to provide guidance to policymakers about expected air quality changes in the near future (2026-2035). The regional air quality model AURORA (Air quality modelling in Urban Regions using an Optimal Resolution Approach), driven by output from a regional climate model, is used to simulate several 10-year time slices to investigate the impact of climatic changes and different emission scenarios on near-surface O-3 concentrations, one of the key indices for air quality. Evaluation of the model against measurements from 34 observation stations shows that the AURORA model is capable of reproducing 10-year mean concentrations, daily cycles and spatial patterns. The results for the Representative Concentration Pathways (RCP)4.5 emission scenario indicate that the mean surface O-3 concentrations are expected to increase significantly in the near future due to less O-3 titration by reduced NOx emissions. Applying an alternative emission scenario for Europe is found to have only a minor impact on the overall concentrations, which are dominated by the background changes. Climate change alone has a much smaller effect on the near-surface O-3 concentrations over Belgium than the projected emission changes. The very high horizontal resolution that is used in this study results in much improved spatial correlations and simulated peak concentrations compared to a standard 25 km simulation. An analysis of the number of peak episodes during summer revealed that the emission reductions in RCP4.5 result in a 25% decrease of these peak episodes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available