4.7 Article

Effects of growth stage and growing degree day accumulations on triticale forages: 1. Dry matter yield, nutritive value, and in vitro dry matter disappearance

Journal

JOURNAL OF DAIRY SCIENCE
Volume 101, Issue 10, Pages 8965-8985

Publisher

ELSEVIER SCIENCE INC
DOI: 10.3168/jds.2018-14868

Keywords

double cropping; harvest timing; nutritive value; triticale

Funding

  1. USDA Agricultural Research Service (Washington, DC) CRIS funds [5090-12630-005-00D]

Ask authors/readers for more resources

The use of triticale (X Triticosecale Wittmack) in dairy-cropping systems has expanded greatly in recent years, partly to improve land stewardship by providing winter ground cover. Our objective was to establish relationships relating indices of nutritive value with growth stage or accumulated growing degree days >5 degrees C for triticale forages grown in central Wisconsin. Replicated 3.7-m x 9.1-m plots were established following removal of corn for silage (fall 2015) and soybeans (fall 2016) and then harvested at various growth stages the following spring. Plants were assigned a numerical growth stage based on a linear staging system suitable for use as an independent regression variable. Response variables [e.g., dry matter (DM) yield, indices of nutritive value, and parameters from in vitro DM disappearance kinetics] were regressed on growth stage and growing degree days using linear, quadratic, cubic, or quartic models. For spring 2016, the mean DM yield at the boot stage (3,804 kg of DM/ha) was only 30% of that observed at the soft dough stage of growth (12,642 kg of DM/ha). Although yields were reduced during spring 2017, primarily due to spring flooding, the relationship between respective yields at these growth stages was similar (1,453 vs. 5,399 kg of DM/ha). Regressions of DM yield (kg/ha) on growth stage for 2016 were explained by a cubic model (Y = 0.0663x(3) - 9.44x(2) + 595x - 9,810) compared with a simple linear response for 2017 (Y = 103x - 3,024); in both cases, coefficients of determination were very high (R-2 >= 0.934). Many nutritional and in vitro DM disappearance characteristics were affected by the juxtaposition and balance of 2 generally competing factors: (1) increased concentrations of structural plant fiber coupled with concurrent lignification as plants matured and (2) the accumulation of highly digestible carbohydrate during seed head development. A comparison of respective energy yields between the boot and soft dough stages of growth for 2016 (2,488 vs. 8,141 kg of total digestible nutrients/ha) and 2017 (1,033 vs. 3,520 kg of total digestible nutrients/ha) suggests that yields of energy are greater at soft dough stage and are mostly driven by DM yield. An informed harvest management decision for lactating cows may still favor a boot-stage harvest because of superior nutritional characteristics, a need to plant double-cropped corn expeditiously, or both. Harvest timing of triticale forages for other livestock classes would appear to be more flexible, but prioritizing a subsequent double crop may reduce the effects on DM yield to a secondary consideration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available