4.7 Article

Bacterial and fungal communities, fermentation, and aerobic stability of conventional hybrids and brown midrib hybrids ensiled at low moisture with or without a homo- and heterofermentative inoculant

Journal

JOURNAL OF DAIRY SCIENCE
Volume 101, Issue 4, Pages 3057-3076

Publisher

ELSEVIER SCIENCE INC
DOI: 10.3168/jds.2017-13754

Keywords

silage; inoculant; hybrid; next-generation sequencing

Funding

  1. North Carolina Dairy Producers Association (Raleigh, NC)

Ask authors/readers for more resources

We evaluated the effects of adding a combination inoculant to 4 corn (Zea mays L.) hybrids harvested at low moisture on the nutritive value, fermentation profile, aerobic stability, bacterial and fungal populations, and community structure. The treatment design was the factorial combination of 4 corn hybrids ensiled with (INO) and without (CON) inoculant. The hybrids were TMF2R737 (MCN), F2F817 (MBR), P2089YHR (PCN), and PI144XR (PBR), ensiled at 44.0, 38.1, 42.0, and 41.3% of dry matter, respectively; MBR and PBR were brown midrib mutants. The inoculant contained Lactobacillus buchneri and Pediococcus pentosaceus (4 x 105 and 1 x 10(5) cfu/g of fresh corn). The experimental design was a complete randomized design with treatments replicated 6 times. Corn was chopped, treated or not with inoculant, packed into 7.6-L bucket silos, and stored for 100 d. At d 0, we found higher bacterial observed operational taxonomic units in the brown midrib mutants (MBR and PBR) relative to MCN and PCN (654 and 534 vs. 434 and 444 +/- 15.5, respectively). The bacterial and fungal families with the highest relative abundance (RA) were Enterobacteriaceae (61.4%) and incertae sedis Tremellales (12.5%). At silo opening, we observed no effects of INO treatment on dry matter recovery (similar to 94.3 +/- 1.07%), but aerobic stability was extended for all INO-treated hybrids (similar to 217 vs. similar to 34.7 h), except for MBR (similar to 49 +/- 38 h), due to a decreased yeast population (3.78 vs. 5.13 +/- 0.440 log cfu/g of fresh corn) and increased acetic acid concentration (1.69 vs. 0.51 +/- 0.132%) compared with the control. Furthermore, INO treatment reduced bacterial (61.2 vs. 276 +/- 8.70) and increased fungal (59.8 vs. 43.6 +/- 2.95) observed operational taxonomic units compared with CON. We observed that INO treatment increased the RA of Lactobacillaceae across all hybrids (similar to 99.1 vs. similar to 58.9), and to larger extent MBR (98.3 vs. 34.3 +/- 5.29), and decreased Enterobacteriaceae (0.614 vs. 23.5 +/- 2.825%) among 4 other bacterial families relative to CON. For fungi, INO treatment increased the RA of Debaryomycetaceae (63.1 vs. 17.3 +/- 8.55) and 5 other fungal families and decreased the RA of Pichiaceae (6.47 vs. 47.3 +/- 10.95) and incertae sedis Saccharomycetales (8.47 vs. 25.9 +/- 5.748) compared with CON. The bacterial and fungal community structures changed, due to ensiling, to a distinct and more stable community dominated by Lactobacillaceae and Debaryomycetaceae, respectively, when INO treatment was applied relative to CON. In conclusion, the INO treatment used in this study improved low-moisture whole-crop corn silage quality because of a shift in the bacterial and fungal community composition during ensiling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available