4.8 Article

Plasma membrane-anchorable photosensitizing nanomicelles for lipid raft-responsive and light-controllable intracellular drug delivery

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 286, Issue -, Pages 103-113

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2018.07.027

Keywords

Plasma membrane-responsive nanoparticles; PDT; Intracellular delivery; Endosomal/lysosomal entrapment; Cell surface engineering

Funding

  1. National Natural Science Foundation of China [21673037]
  2. Natural Science Foundation of Jiangsu Province [BK20170078]
  3. Innovative and Entrepreneurial Talent Recruitment Program of Jiangsu Province
  4. Fundamental Research Funds for the Central Universities
  5. Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX17_0157]

Ask authors/readers for more resources

The past decade has witnessed a growing number of nanoparticulate drug delivery systems for cancer treatment. However, insufficient cellular uptake by cancer cells and the undesirable endo/lysosomal entrapment of internalized therapeutic drugs remain the Achilles heel of many developed nanoagents. Here, we develop a novel lipid raft-responsive and light-controllable polymeric drug for efficient cytosolic delivery of photosensitizers. Conjugating a photosensitizer protoporphyrin IX (PpIX) to a polyethylene glycol-cholesterol polymer affords the amphiphilic drug (denoted as Chol-PEG-PpIX) that forms micelles in aqueous solutions. The Chol-PEG-PpIX with two hydrophobic units (cholesterol and PpIX) showed robust binding to plasma membranes and enabled significant cellular uptake via two pathways: (1) cholesterol moiety triggered the lipid raft-mediated endocytosis of Chol-PEG-PpIX with minimized endo/lysosomal trafficking after internalization; (2) the membrane-bound PpIX acted as a light-controlled trigger and can augment the permeability of plasma membranes upon laser irradiation, allowing the rapid influx of extracellular Chol-PEG-PpIX within 5 min. For systemic drug delivery, Chol-PEG-PpIX was anchored on the surface of liposomes via in situ membrane modification, which substantially avoided nonspecific binding of Chol-PEG-PpIX to red blood cells during circulation. Besides, the Chol-PEG-PpIX-anchored liposomes exhibited enhanced in vivo fluorescence, reduced liver uptake, prolonged tumor retention, and effective tumor ablation by photodynamic therapy. This work illustrates a new strategy for direct and efficient cytosolic delivery of photosensitizers, which may hold great promise in cancer therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available