4.8 Article

Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 281, Issue -, Pages 84-96

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2018.05.018

Keywords

Cancer immunotherapy; CTLA-4; Hybrid nanoparticles; Imatinib; tLyp1 peptide; Treg cell

Funding

  1. National Research Foundation of Korea (NRF) grant - Korea Government (MSIP) [2015R1A2A2A01004118, 2015R1A2A2A04004806]
  2. Medical Research Center Program through the NRF grant [2015R1A5A2009124]

Ask authors/readers for more resources

Immunosuppression in tumor microenvironments induced by regulatory T (Treg) cells is regarded a critical mechanism of tumor immune escape and poses a major impediment to cancer immunotherapy. In this study, we developed tLyp1 peptide-conjugated hybrid nanoparticles for targeting Treg cells in the tumor microenvironment. The tLyp1 peptide-modified hybrid nanoparticles presented good stability and effective targeting to Treg cells, and they enhanced the effect of imatinib in downregulating Treg cell suppression through inhibition of STAT3 and STAT5 phosphorylation. In addition, an in vivo study revealed high tumor accumulation of the hybrid nanoparticle. Specifically, prolonged survival rate, enhanced tumor inhibition, reduced intratumoral Treg cells, and elevated intratumoral CD8(+) T cells against tumor were observed when combined with checkpoint-blockade by using anti-cytotoxic T-lymphocyte antigen-4 antibody. This study provided groundwork for a repertoire of nanoparticle-based drugs for targeting and modulating Treg cell function in the tumor microenvironment and for improving antitumor immunotherapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available