4.6 Article

Impacts of age-dependent tree sensitivity and dating approaches on dendrogeomorphic time series of landslides

Journal

GEOMORPHOLOGY
Volume 236, Issue -, Pages 34-43

Publisher

ELSEVIER
DOI: 10.1016/j.geomorph.2015.02.003

Keywords

Landslide; Dendrogeomorphology; Reaction wood; Tree-ring eccentricity; Tree sensitivity; Age effects

Funding

  1. Czech Science Foundation [P209/12/0317]
  2. [15-02067S]

Ask authors/readers for more resources

Different approaches and thresholds have been utilized in the past to date landslides with growth ring series of disturbed trees. Past work was mostly based on conifer species because of their well-defined ring boundaries and the easy identification of compression wood after stem tilting. More recently, work has been expanded to include broad-leaved trees, which are thought to produce less and less evident reactions after landsliding. This contribution reviews recent progress made in dendrogeomorphic landslide analysis and introduces a new approach in which landslides are dated via ring eccentricity formed after tilting. We compare results of this new and the more conventional approaches. In addition, the paper also addresses tree sensitivity to landslide disturbance as a function of tree age and trunk diameter using 119 common beech (Fagus sylvatica L.) and 39 Crimean pine (Pinus nigra ssp. pallasiana) trees growing on two landslide bodies. The landslide events reconstructed with the classical approach (reaction wood) also appear as events in the eccentricity analysis, but the inclusion of eccentricity clearly allowed for more (162%) landslides to be detected in the tree-ring series. With respect to tree sensitivity, conifers and broad-leaved trees show the strongest reactions to landslides at ages comprised between 40 and 60 years, with a second phase of increased sensitivity in P. nigra at ages of ca. 120-130 years. These phases of highest sensitivities correspond with trunk diameters at breast height of 6-8 and 18-22 cm, respectively (P. nigra). This study thus calls for the inclusion of eccentricity analyses in future landslide reconstructions as well as for the selection of trees belonging to different age and diameter classes to allow for a well-balanced and more complete reconstruction of past events. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available