4.7 Article

Novel algorithm using Active Metamodel Learning and Importance Sampling: Application to multiple failure regions of low probability

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 368, Issue -, Pages 92-114

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2018.04.047

Keywords

Tail probability; Importance sampling; Risk analysis; Multiple failure regions; Low failure probability; Unbiased estimation

Ask authors/readers for more resources

Calculation of tail probabilities is of fundamental importance in several domains, such as in risk assessment. One major challenge consists in the computation of low-failure probability in cases characterized by multiple-failure regions, especially when an unbiased estimation of the error is required. Methods developed in literature rely mostly on the construction of an adaptive surrogate, tackling some problems such as the metamodel building criterion and the global computational cost, at the price of a generally biased estimation of the failure probability. In this paper, we propose a novel algorithm suitable for low-failure probability and multiple-failure regions, permitting to both building an accurate metamodel and to provide a statistically consistent error. Indeed, an importance sampling technique is used, which is quasi-optimal since permits, by exploiting the knowledge of the metamodel, to provide two unbiased estimators of the failure probability. Additionally, a gaussian mixture-based importance sampling technique is proposed, permitting to drastically reduce the computational cost when estimating some reference values, or the failure probability directly from the metamodel. Several numerical examples are carried out, showing the very good performances of the proposed method with respect to the state-of-the-art in terms of accuracy and computational cost. A physical test-case, focused on the numerical simulation of non-ideal gas turbine cascades, is also investigated to illustrate the capabilities of the method on an industrial case. (C) 2018 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available