4.1 Article

Theoretical prediction of encapsulation and adsorption of platinum-anticancer drugs into single walled boron nitride and carbon nanotubes

Journal

Publisher

SPRINGER
DOI: 10.1007/s10847-013-0367-1

Keywords

Pt-anticancer drug; Encapsulation; Adsorption; BNNT; DFT

Funding

  1. Shahid Chamran University

Ask authors/readers for more resources

In this research, the adsorption and encapsulation of cisplatin, nedplatin, oxaliplatin and carbaplatin as Pt-anticancer drugs into the (7,7) boron nitride nanotube (BNNT) and carbon nanotube (CNT) are investigated using density functional theory. The different orientation modes of drug molecules onto the outer and inner surfaces of BNNT and CNT are studied. Analysis of the adsorption energy reveals that the complex formation process is favorable. The calculated adsorption energies indicate that the encapsulation of drugs inside the nanotubes is more favorable than the adsorption of drugs outside of the nanotubes. On the other hand, the results show that the BNNT/oxaliplatin(in) system is more stable than the others. The stabilization of nanotube/drug complexes results in electronic and structural properties change in the nanotubes. The natural bond orbital calculations show that the van der Waals forces, hydrogen bonding and electrostatic interactions are the major factors contributed to the overall stabilities of the complexes. The predicted electronic and structural properties of BNNT compared to the CNT towards Pt-anticancer drugs, suggest that BNNT can act as drug delivery vehicles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available