4.6 Article

Corneal Sensory Nerve Activity in an Experimental Model of UV Keratitis

Journal

INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE
Volume 55, Issue 6, Pages 3403-3412

Publisher

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/iovs.13-13774

Keywords

corneal innervation; UV-induced inflammation; photokeratitis

Categories

Funding

  1. Generalitat Valenciana, Spain [GV/2007/030]
  2. Ministerio de Economia y Competitividad, Spain [BFU2008-04425]
  3. [SAF2011-22500]

Ask authors/readers for more resources

PURPOSE. To produce in guinea pigs a UV-induced keratitis, to analyze the effects of this pathology on corneal nerve activity. METHODS. In anesthetized animals, one eye was exposed to 254 nm UV-C radiation (500-1000 mJ/cm(2)), excised 24 to 48 hours later and superfused in vitro. Nerve impulse activity was recorded in ciliary nerve filaments or in corneal sensory terminals of intact and UV-irradiated eyes. Impulse activity in response to mechanical (von Frey hairs), chemical (98.5% CO2 gas jets), and thermal stimulation (cooling from 34 degrees C to 20 degrees C; heating to 50 degrees C) was analyzed. Duration of eyelid closure and blinking and tearing rates were evaluated in control and in UV-irradiated eyes, before and after application of TRPV1, TRPA1, and TRPM8 agonists (100 mu M capsaicin; 10 mM AITC, and 200 mu M menthol, respectively). RESULTS. After irradiation, mechanical threshold of mechano-nociceptor corneo-scleral fibers was reduced (0.59 +/- 0.4 vs. 0.27 +/- 0.07 mN; P < 0.05) while polymodal nociceptors increased their response to chemical stimulation (1.7 +/- 0.2 vs. 3.4 +/- 0.5 imps/s; P < 0.05). In contrast, cold thermoreceptors showed a significantly lower ongoing activity at 34 degrees C (8.6 +/- 0.5 vs. 6.1 +/- 0.9 imp/s; P < 0.05) and a reduced responsiveness to cooling pulses (peak frequency 29.8 +/- 1.3 vs. 18.9 +/- 1.8 imp/s; P < 0.001). Blinking but not tearing rate was significantly higher; behavioral responses to topical capsaicin and AITC, but not to menthol were enhanced in UV-irradiated animals. CONCLUSIONS. Sensitization of nociceptor and depression of cold thermoreceptor activity following UV radiation appear to result from an action of inflammatory mediators on TRP channels selectively expressed by sensory nerve terminals. Changes in nerve activity possibly underlie discomfort sensations associated with corneo-conjunctival inflammation induced by UV exposure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available