4.7 Article

Free-standing carbon nanofiber fabrics for high performance flexible supercapacitor

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 531, Issue -, Pages 513-522

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2018.06.093

Keywords

Carbon nanofiber fabrics; Flexible; High surface area; Supercapacitor

Funding

  1. MOST [2014CB239702]
  2. NSFC [U1710252, 21506061]
  3. Young Elite Scientists Sponsorship Program by CAST [2017QNRC001]
  4. Shanghai Rising-Star Program [17QB1401700]
  5. Fundamental Research Funds for the Central Universities [222201817001]

Ask authors/readers for more resources

Free-standing carbon nanofiber fabrics with high surface area and good flexibility were prepared via a combined electrospinning and nanocasting method using low molecular weight phenolic resol as carbon precursor and partial-hydrolyzed tetraethyl orthosilicate as template, followed by carbonization and silica removal. The key to our strategy lies in the formation of a stable electrospinning solution derived from the polycondensation of partial-hydrolyzed TEOS in mild hydrolysis with low molecular phenolic resol and PVB which could decrease the gelation rate to benefit for the steady electrospinning process of preparing large area hybrid nanofiber fabrics. The obtained carbons possess high specific surface area up to 2292 m(2)/g with a large pore volume of 1.02 cm(3)/g. As flexible electrodes, these carbon nanofiber fabrics could deliver high specific capacitance up to 274 F/g at 0.1 A/g in H2SO4 electrolyte and 220 F/g at 0.5 A/g in solid-state supercapacitor with good rate and cyclic performance. These outstanding advantages of carbon nanofiber fabrics, including their well-developed microporosity, easily tailored pore structure, good mechanical strength and flexibility, endow them with great potential for application in flexible energy storage devices. (C) 2018 Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available