4.4 Article Proceedings Paper

Preserved Object Weight Processing after Bilateral Lateral Occipital Complex Lesions

Journal

JOURNAL OF COGNITIVE NEUROSCIENCE
Volume 30, Issue 11, Pages 1683-1690

Publisher

MIT PRESS
DOI: 10.1162/jocn_a_01314

Keywords

-

Funding

  1. National Eye Institute of the National Institutes of Health [R01EY026701]
  2. EPSCoR grant from the National Science Foundation [1632849]
  3. Office of Integrative Activities
  4. Office Of The Director [1632849] Funding Source: National Science Foundation

Ask authors/readers for more resources

Object interaction requires knowledge of the weight of an object, as well as its shape. The lateral occipital complex (LOC), an area within the ventral visual pathway, is well known to be critically involved in processing visual shape information. Recently, however, LOC has also been implicated in coding object weight before graspinga result that is surprising because weight is a nonvisual object property that is more relevant for motor interaction than visual perception. Here, we examined the causal role of LOC in perceiving heaviness and in determining appropriate fingertip forces during object lifting. We studied perceptions of heaviness and lifting behavior in a neuropsychological patient (M.C.) who has large bilateral occipitotemporal lesions that include LOC. We compared the patient's performance to a group of 18 neurologically healthy age-matched controls. Participants were asked to lift and report the perceived heaviness of a set of equally weighted spherical objects of various sizesstimuli which typically induce the size-weight illusion, in which the smaller objects feel heavier than the larger objects despite having identical mass. Despite her ventral stream lesions, M.C. experienced a robust size-weight illusion induced by visual cues to object volume, and the magnitude of the illusion in M.C. was comparable to age-matched controls. Similarly, M.C. evinced predictive fingertip force scaling to visual size cues during her initial lifts of the objects that were well within the normal range. These single-case neuropsychological findings suggest that LOC is unlikely to play a causal role in computing object weight.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available